LAVER-SHELAH ITERATION

SIIRI KIVIMAKI

ABSTRACT. My personal notes from Laver and Shelah [3]: assuming a weakly
compact cardinal, it is consistent that all Ro-Aronszajn trees are special and
CH holds.
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The goal is to produce a model of set theory where there are Ro-Aronszajn trees
and all of them are special. An Ro-tree T is special if there is a function f: T — w;
such that

f(s)=f(t) = sit
for all distinct nodes s,t € T. We start by assuming GCH and the existence of a
weakly compact cardinal x and force over this model. The poset is an iteration
(Ps : 6 < k*) such that the first poset collapses k to Ry and the rest specialize
all k-Aronszajn trees. The existence of Ro-Aronszajn trees in the final model is
guaranteed by preserving CH along the iteration.

Indeed, the first poset Py will be the collapse Coll(wy,< %), which consists of
countable partial functions p : wy x kK - k such that p(a, ) € 8 for all a € wy and
[ € k. This poset creates k-Aronszajn trees, since k becomes Ry and CH holds in
VP Each iterand Q; will be a Ps-name for the poset of countable approximations
of a specialising function for a tree given by a bookkeeping function. The final
poset P+ will be o-closed and have k-cc. The o-closure guarantees preservation of
CH and k-cc guarantees preservation of .

Furthermore, each poset Ps for § < k* will be k-strongly proper: strongly
proper with respect to stationarily many models of size < k. By k-strong properness,
lots of new subsets of wy are added, so the final model will satisfy 2“! = ws.

Note that it is not possible to specialize a k-Aronszajn tree T which is in V'
with k-strongly proper poset. Yet, the posets in this proof are k-strongly proper.
This is not a problem, since there are no k-Aronszajn trees in V, since  is weakly
compact. All the trees appear along the iteration. This implies, in particular, that
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the quotient posets Ps/P, are not x-strongly proper for any v < ¢ < x*, as they
indeed do specialize k-Aronszajn trees.

The fact that there are no k-Aronszajn trees in V allows to perform a Mitchell-
style splitting argument, which is described in detail in Lemma 4.8. The argument
here generalizes to wide Ro-Aronszajn trees, with a version of Lemma 4.8 that allows
to split nodes that are “exit nodes from the side”, i.e. exit nodes from V,, of height
<a.

1. STRONG PROPERNESS

Definition 1.1. Let IP be a poset and let M be a set.
(1) Let peP. A condition r e Pn M is a residue for p into M if

YwePn M((w<r - w|p).

(2) A condition p is strongly (P, M)-generic if every ¢ < p has a residue into
M.

(3) The poset P is strongly proper with respect to M if for every p e Pn M
there is ¢ < p which is strongly (P, M )-generic.

(4) The poset P is k-strongly proper if it is strongly proper with respect to
stationarily many M € 2, (Hy) for any large enough regular 6.

A proof of the following lemma can be found in [1]:

Lemma 1.2. A condition p is strongly (P, M)-generic if and only if
pI- GnM isa V-generic filter on Pn M.

Thus, strong properness is a generalisation of properness.

We define the notion of common or dual residue because we will do a following
kind of splitting argument; we are in a situation where we have a poset PP, a name
for a tree T, a suitable model M, a condition p € P and a node t ¢ M. We will split
the node t in the following sense: we find two distinct nodes s and s® in M and

two conditions ¢* and ¢ extending p such that they have a common residue r into
M and such that ¢” I+ s* <t and ¢® I+ s% < t.

Definition 1.3. Let P be a poset and let M be a suitable model. Let p,qgeP. A
common residue for p and ¢ in M is a condition r € Pn M which is a residue for
p and residue for ¢, i.e.

YwePn M(w<r— wlpAwl|q).
Remark 1.4. If two conditions p and ¢ have a common residue it does not follow
that p and ¢ are compatible.

2. THE POSET

Throughout, let x be a fixed weakly compact cardinal. We will define a countable
support iteration (Ps : 0 < k%) that will collapse k onto Ry and specialize all k-
Aronszajn trees.

Notation 2.1. We fix a bookkeeping function
kY > Hye, 6w T

such that T} is a Ps-name for a k-Aronszajn tree with domain k, whenever the
poset Ps is defined, for every 6 < k™.
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For a tree T, a partial specializing function is a partial function f on 7 such
that for any two distinct nodes s,t € T, if f(s) = f(t), then s and ¢ are incompatible
in the tree order of T'.

Definition 2.2. For each § < k¥, conditions of the poset Ps are functions
p:d—> Vg

such that

(1) p(0) € Coll(wy, < k),
(2) p(v) is a countable partial function f? : k - w; such that

p Iy Ik “f¥ is a partial specializing function of T,y”,

for every v > 0, _
(3) p Iy decides the tree order of 1%, on dom(f?),
(4) the support sp(p) := {y < d:p(y) # @} is countable.

The order is defined by pointwise inverse inclusion:
qg<p = Vy<dq(y)2p(7).

Remark 2.3. For v < §, there is a canonical complete embedding P., < Ps that
takes a condition p in Py to p™(&,4,...) and each poset Ps is a dense subset of
the iteration with iterands (Qv 1y < d), where Qp = Coll(w,< k) and each QA, is a
name for the poset of countable approximations of specialising functions for TA,.

3. TRACES

Notation 3.1. Let 6 > k* be a regular cardinal and let <y be a well-ordering of
Hy. For each § < k™ and « € &, let

M? := Skolem hull of «v in (Hy, €,<g, k,5).
Remark 3.2. We have w; n Mg = « for club many a < w;.

Remark 3.3. We may assume without loss of generality that each Mg contains
the bookkeeping function v — T’, as element.

Remark 3.4. Pse M?.

Definition 3.5. Let § < x*. For each p € Ps and « € &, the trace p|, of p into M?
is a function on § defined by

p(y) t M2 ifyedsn M,
pla(v) = .
%] otherwise.

Remark 3.6. p|,(0) € Coll(w, < o) whenever wy n M? = a.

Remark 3.7. In general, p|, might not be a condition, but it will for stationarily
many « € k. The goal is to show that for stationarily many «, for every p € Ps, the
trace p|,, is a residue for p, in the sense defined below in 1.1.
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4. PRESERVATION OF K

We show by induction on § < k™ that Ps has k-cc and is strongly proper with
respect to Mg for Fyc-many a € k. Here F,. is the weakly compact filter
generated by sets

{aer:VieEp(A)=VyE(AnTV,)},

for a I} -formula (X ) and a set A € V.. The filter Fy. is a normal filter on « that
extends the club filter. See Proposition 6.11. from Kanamori [2]. An important
fact is that the statement “T is a rk-Aronszajn tree” is I} for any T ¢ Vi, and
furthermore, so is the statament

“Ikp T is a k-Aronszajn tree”,
whenever P, T c V.
The goal is to show the following proposition:

Proposition 4.1. Let § < k*.
(1) Ps has k-cc.
(2) It holds for Fuc-many a < k that if p,q € Ps have the same trace to M2,
then they have a common residue into M2,

The rest of the section is devoted to the prove Proposition 4.1. The proof is by
induction on §. From now onwards until the end of the paper, we fix one
d < k* and assume that the proposition holds for all v <d. We begin by
proving a series of lemmas.

4.1. Preliminary lemmas.

Remark 4.2. The poset Ps has size k. We tacitly assume that each Ps is coded as a
subset of V,.. Up to choosing the <p-least function, we may assume that each model
MY knows about this coding. This will be important when using the IT}-reflection
of k.

We say that a subposet Q ¢ P, determines a subset S ¢ T, if for all nodes
s,t € S the set of conditions deciding the tree-order of T, between s and ¢ is dense

in Q.

Lemma 4.3. Assume that P~ has k-cc for all v < §. Then, it holds for club many
«a € K that for every ye€dn Mi, the poset P, NV, determines the set Levo(T5).

Proof. Follows from strong inaccessibility of x and k-cc of each IP,. O

Lemma 4.4. For F,. many « € K, it holds that for every p € Ps, the trace pl, is a
condition in Ps 0 M2,

Proof. Follows from the induction hypothesis and the lemma above. (I

Lemma 4.5. If p,q € Ps have a common residue r into Mg, then there are p < p
and 4 < q with a common trace into Mg extending .
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Lemma 4.6. The set
{aer: (1) VinM =V,,
(2
(3
4
5
6
(7

« s an inaccessible cardinal,
VyednMS P,n M) has a-cc,
VyednMS P,AnM])c.P

=c Ly,

~ o~

V’)/EéﬂMg ”_]P’,YOJW;Z “OZ:NQ”,

—~

Vyedn Mg p_angy “Th NVa is an Aronszajn tree on a7,

)
)
)
)
)
) VyednMS VpeP, pl, P, n M)}

s N Fyc.

Proof. Points (1), (2) follow directly from the fact that k is weakly compact, in
particular regular and Mahlo. Point (3) follows by IT}-reflection from the hypothesis
that P, has k-cc. Point (4) follows from (3) and normality of F. by a pressing down
argument. Points (5), (6) follow by IT}-reflection. Point (7) is previous lemma. [

4.2. Splitting.

Definition 4.7. Let p,q € Ps, v <6 and let s,¢ € T’,. We say that the conditions p
and q split the pair (s,t) below « if there are two distinct nodes 3,7 € T, na
of the same height such that

plyIF§<s,
gtyi-t<t.

The case s =t is not excluded; we say that p and ¢ split the node s below o
if p and ¢ split the pair (s, s) below a.
The use of the weakly compact cardinal is substantial in the following lemma.

Lemma 4.8 (Splitting). The following holds for Fye-many o < k: for any two
conditions p,q € Ps with same trace to Mi there are two conditions p < p and
g < q that have the same trace to M) and that split below « every pair of nodes
(s,t) € (dom(fﬁf) x dom(fg)) —a where yedn M.

Proof. We begin with a claim that we will then iterate to finish the proof of the
lemma.

Claim 4.9. The following holds for Fye-many o < k: for any v € 6 n M2, any
two conditions p,q € P, that have a common residue r into M7, and any nodes
s,t € T, — o there are two conditions p < p and § < q that have a common residue
7 <r into M and that split the pair (s,t) below .

Proof of Claim 4.9. We show that the claim holds for every a < k from the set in
Lemma 4.6. Let yedn Mé and suppose that p,q € P, are conditions with same
trace to M. Let s,t € T, — a. The reflection properties of the weakly compact
are essential in the following step. Let G' ¢ P, n M be a generic filter containing
the common residue of p and ¢. It follows that p and ¢ are in the quotient forcing
P, /G. By the choice of a, it holds (among other things) that

(%) -p_ Ay “Ty Nais an a-Aronszajn tree”.
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Thus (7},)¢ is an a-Aronszajn tree, and thus the branch below the node s must be
introduced by the quotient forcing P~ /G, for otherwise it would be a cofinal branch
in (TA, Nna)g. Thus, there must be two conditions p*, pf* < p in P, /G that split s
at some level 8 < o with some distinct nodes s* and s. Since p” and p® are in
the quotient forcing P, /G, there is some 7 € G that forces p,q € IE”W/CVT'. This ry is a
common residue for p and q. Then we find an extension § < ¢, also in the quotient
P5/G, such that ¢ decides the node below t at level 3, call it t. There is r € G that
extends rg and forces § € Ps /é Then 7 is a common residue for p~, p® and §. If
t + s&, then p” and § are as wanted, and if £ # s, then p® and § are as wanted.
This ends the proof of the claim. O

We now complete the proof of Lemma 4.8 by iterating Claim 4.9 countably many
times. Using a suitable enumeration, we find conditions (pp,)n<w and (g, )n<o such
that conditions p,, and ¢, have a common residue r,, into M(‘i and split a pair of
nodes (sp,t,) from T, — a, where v, € 5 n M2, s, € dom(f¥~) and t,, € dom(fi").

This is accomplished by first fixing a bijection () : w x w x w — w that is suitable
in the sense that whenever n = (m, k,[), then m < n. We begin by letting pg := p and
qo := q. At step n+1, we assume that p,, and ¢, have been defined and have the same
trace to M2. We first enumerate the union of the supports (sp(p,) U sp(qn)) nM?

as (7} : k <w), and the set of all nodes in (dom(f ) —a) x (dom(fqn) a), for
each k <w, as ((S(nk,1) t(nk,1) : | <w). Then we ple the unique m, k, l such that
n = (m, k,1) and look at the conditions p,, | *yf@ and g, ! *y,’%. We apply the induction
hypothe51s of Proposition 4. 1( ): since py, r'ym and ¢, | vm have the same trace to
M) o , there is r € PX,, n M]] ™ that is a common residue for them. Then we apply
Clalm 4.9 to the nodes 5(,, 1,1y and t(,, p;): we find two conditions p’ n | ’Ym
and ¢’ < ¢, r’y,’fl in P that split s, x,1) and ¢(;, x,1) and have a common residue

i
r’ <rinto MJ™. By Lemma 4.5 we may extend further to assume that p’ and ¢

have the same trace into M(ZVIZ, and the same trace extends r’. We define p,,,1 and
qn+1 by taking the pointwise union:

Prs1 = pn [ 0),

Gne1 =" "qn | [7h, ).
Then p,,1 and ¢,.1 have the same trace to Mf; and split the nodes s, 1) and

Eem i 0y
Finally, we let p := U, pn and ¢ :=U,, ¢.. They are as wanted.
O

4.3. Proof of x-cc and existence of common residues.

We finally are ready to prove Proposition 4.1.

Proof of Proposition 4.1. The proof is by induction on 4. We assume that the
proposition holds for v € § and show that it holds for §.

(1) We show that Ps has k-cc. Let {p, :a €k} € Ps. We find distinct « and 3
such that p, and pg are compatible.
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The general idea is as follows. By applying Splitting Lemma 4.8, for
Fue many a, find conditions pZ, p2 < p, which split relevant pairs of nodes
and satisfy pZ|, = ¢ff|o. Then, by pressing down with Fodor’s lemma, it is
possible to show that for F,. many o < 3, the left extension pZ is compatible
with the right extension pg. This allows to finish.

Now in more detail. Look at the set S5 € F,c from Lemma 4.8. For every
a € Sg, find

Pa>Ph < Pa
such that pZ|, = pf|, and for all v € § 0 M2, the pair (pZ, pZ) splits each
L R

pair of nodes (s,t) in (dom(fy=) xdom(fy*)) -V, with some pair of nodes
(5,t) from V,. By pigeonhole principle there is an Fy-positive set U ¢ S;
such that for all a, 8 € U there are isomorphisms

112

L
p[-}?
Pl

b

L
«
R
Pa

112

which fix the traces
Pila = pfls = pils = P
Up to further refining U, we may assume that for all « < 8 from U and
v €9,
L R
sup{ht(t) : t € (dom(fF>)udom(fr=)) - V,}
L
<min{ht(t) : t € (dom(f2%) udom(f7%)) - Vs},
and that
(sp(py) — @) 0 (sp(pf) - B) = @.

Choose a < § from U. We claim that pf|[pj. Define p to be the pointwise
union, by letting

p(0) := p5(0) Up§(0),
PO = f7 0

We claim that p extends to a condition. We need to make sure that p |
decides the tree-order of T, relativised to dom( ff ) and that show that f§
is forced to be a specializing function. If to the contrary this is not the
case, then there are two distinct nodes s,t € dom(fg) such that

() = F(t)

L R
and such that p | v IF s < t. If s,t € dom(f2>) or s,t € dom(f?), we
R

L 1
are done. Assume thus that s € dom(f7=) and ¢ € dom(f5”). Now, by
construction,

pé FyI-5<s,
P by it<t.
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This is because the pair (pL I v,pZ | ) splits some pair (s,t") with (5,#")
and the pair (p[]j r%pg I ) splits a pair (s',t) with (3',%). This implies

DIF slt.

(2) We show that for F,. many « € k, whenever p and ¢ are two conditions in
P; with the same trace p|o = ¢lo to M2, then they have a common residue
to M.

Suppose to the contrary that there is an F,-positive set S such that
for every a € S, there are two conditions p, and ¢, with the same
trace Pala = gala and such that no condition in Psn Mg is a common
residue for them. We may choose the set S such that every a € S
satisfies all properties listed in Lemmas 4.3, 4.4 and 4.6. Furthermore,
we may assume by the splitting lemma 4.8 that for every a € S, there
are Po < po and go, < qo with same traces Poa = Golo and such that all
relevant pairs of nodes are split.

By stratifying by levels we may arrange that for o < 8 in S’, the
conditions P, and §g are compatible, as in the proof of k-cc.

For every « € S there is a maximal antichain

Wy c{relPs ﬂMg 7 < Pala = dala and (r1p, or 71da)}-

Since we already proved k-cc of Py, we may assume that Psn Mi Ce
Ps/pq for every o € S. This implies that W, is a maximal antichain in
Pé/ﬁa|a-

Each antichain W, has size < k. There is a subset S’ ¢ S such that
Wy = Wp for o, € S', and such that for r € W, poLr iff pgir and
GoLr iff ggLr. This follows by Fodor’s lemma applied to the fact that
wlog we may fix an enumeration of all antichains Ps of length x and
since there are stationarily many inaccesibles below x, there are many
a < Kk such that the enumeration gvies an enumeration of antichains of
Psn M g of length «; then the function mapping « to the index of W,
is regressive.

Choose some v < Pq,Gs. Then v < Palo and without loss of generality
v does not belong to Ps N Mg. Thus v ¢ W, = W either.

We claim that W u {v} is an antichain. This will contradict the max-
imality of W. Indeed, if w € W, then either wlp, or wigg. The first
case implies that wlv and the second case implies that wlv. Thus
W u{v} is indeed an antichain. This is a contradiction.

O

Corollary 4.10. Fach poset Ps is k-strongly proper and have k-cc, for 6 < k*. The
poset P+ has k-cc.
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