
LAVER-SHELAH ITERATION

SIIRI KIVIMÄKI

Abstract. My personal notes from Laver and Shelah [3]: assuming a weakly
compact cardinal, it is consistent that all ℵ2-Aronszajn trees are special and
CH holds.
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The goal is to produce a model of set theory where there are ℵ2-Aronszajn trees
and all of them are special. An ℵ2-tree T is special if there is a function f ∶ T → ω1
such that

f(s) = f(t) Ô⇒ s�t
for all distinct nodes s, t ∈ T . We start by assuming GCH and the existence of a
weakly compact cardinal κ and force over this model. The poset is an iteration
(Pδ ∶ δ ⩽ κ+) such that the first poset collapses κ to ℵ2 and the rest specialize
all κ-Aronszajn trees. The existence of ℵ2-Aronszajn trees in the final model is
guaranteed by preserving CH along the iteration.

Indeed, the first poset P0 will be the collapse Coll(ω1,< κ), which consists of
countable partial functions p ∶ ω1 × κ → κ such that p(α, β) ∈ β for all α ∈ ω1 and
β ∈ κ. This poset creates κ-Aronszajn trees, since κ becomes ℵ2 and CH holds in
V P0 . Each iterand Q̇δ will be a Pδ-name for the poset of countable approximations
of a specialising function for a tree given by a bookkeeping function. The final
poset Pκ+ will be σ-closed and have κ-cc. The σ-closure guarantees preservation of
CH and κ-cc guarantees preservation of κ.

Furthermore, each poset Pδ for δ < κ+ will be κ-strongly proper: strongly
proper with respect to stationarily many models of size < κ. By κ-strong properness,
lots of new subsets of ω1 are added, so the final model will satisfy 2ω1 = ω3.

Note that it is not possible to specialize a κ-Aronszajn tree T which is in V
with κ-strongly proper poset. Yet, the posets in this proof are κ-strongly proper.
This is not a problem, since there are no κ-Aronszajn trees in V , since κ is weakly
compact. All the trees appear along the iteration. This implies, in particular, that
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the quotient posets Pδ/Pγ are not κ-strongly proper for any γ < δ < κ+, as they
indeed do specialize κ-Aronszajn trees.

The fact that there are no κ-Aronszajn trees in V allows to perform a Mitchell-
style splitting argument, which is described in detail in Lemma 4.8. The argument
here generalizes to wide ℵ2-Aronszajn trees, with a version of Lemma 4.8 that allows
to split nodes that are “exit nodes from the side”, i.e. exit nodes from Vα of height
< α.

1. Strong properness

Definition 1.1. Let P be a poset and let M be a set.
(1) Let p ∈ P. A condition r ∈ P ∩M is a residue for p into M if

∀w ∈ P ∩M(w ⩽ r → w∣∣p).
(2) A condition p is strongly (P, M)-generic if every q ⩽ p has a residue into

M .
(3) The poset P is strongly proper with respect to M if for every p ∈ P∩M

there is q ⩽ p which is strongly (P, M)-generic.
(4) The poset P is κ-strongly proper if it is strongly proper with respect to

stationarily many M ∈Pκ(Hθ) for any large enough regular θ.
A proof of the following lemma can be found in [1]:

Lemma 1.2. A condition p is strongly (P, M)-generic if and only if
p ⊩ Ǧ ∩M is a V -generic filter on P ∩M.

Thus, strong properness is a generalisation of properness.

We define the notion of common or dual residue because we will do a following
kind of splitting argument; we are in a situation where we have a poset P, a name
for a tree Ṫ , a suitable model M , a condition p ∈ P and a node t ∉M . We will split
the node t in the following sense: we find two distinct nodes sL and sR in M and
two conditions qL and qR extending p such that they have a common residue r into
M and such that qL ⊩ sL < t and qR ⊩ sR < t.
Definition 1.3. Let P be a poset and let M be a suitable model. Let p, q ∈ P. A
common residue for p and q in M is a condition r ∈ P ∩M which is a residue for
p and residue for q, i.e.

∀w ∈ P ∩M(w ⩽ r → w∣∣p ∧w∣∣q).
Remark 1.4. If two conditions p and q have a common residue it does not follow
that p and q are compatible.

2. The poset

Throughout, let κ be a fixed weakly compact cardinal. We will define a countable
support iteration (Pδ ∶ δ ⩽ κ+) that will collapse κ onto ℵ2 and specialize all κ-
Aronszajn trees.
Notation 2.1. We fix a bookkeeping function

κ+ →Hκ+ , δ ↦ Ṫδ

such that Ṫδ is a Pδ-name for a κ-Aronszajn tree with domain κ, whenever the
poset Pδ is defined, for every δ < κ+.
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For a tree T , a partial specializing function is a partial function f on T such
that for any two distinct nodes s, t ∈ T , if f(s) = f(t), then s and t are incompatible
in the tree order of T .

Definition 2.2. For each δ ⩽ κ+, conditions of the poset Pδ are functions

p ∶ δ → Vκ

such that
(1) p(0) ∈ Coll(ω1,< κ),
(2) p(γ) is a countable partial function fp

γ ∶ κ→ ω1 such that

p ↾ γ ⊩ “fp
γ is a partial specializing function of Ṫγ”,

for every γ > 0,
(3) p ↾ γ decides the tree order of Ṫγ on dom(fp

γ ),
(4) the support sp(p) ∶= {γ < δ ∶ p(γ) ≠ ∅} is countable.

The order is defined by pointwise inverse inclusion:

q ⩽ p ∶ ⇐⇒ ∀γ < δ q(γ) ⊇ p(γ).

Remark 2.3. For γ < δ, there is a canonical complete embedding Pγ ↪ Pδ that
takes a condition p in Pγ to p⌢(∅,∅, . . . ) and each poset Pδ is a dense subset of
the iteration with iterands (Q̇γ ∶ γ < δ), where Q0 = Coll(ω1,< κ) and each Q̇γ is a
name for the poset of countable approximations of specialising functions for Ṫγ .

3. Traces

Notation 3.1. Let θ > κ+ be a regular cardinal and let <θ be a well-ordering of
Hθ. For each δ < κ+ and α ∈ κ, let

Mδ
α ∶= Skolem hull of α in (Hθ, ∈,<θ, κ, δ).

Remark 3.2. We have ω1 ∩Mδ
α = α for club many α < ω1.

Remark 3.3. We may assume without loss of generality that each Mδ
α contains

the bookkeeping function γ → Ṫγ as element.

Remark 3.4. Pδ ∈Mδ
α.

Definition 3.5. Let δ < κ+. For each p ∈ Pδ and α ∈ κ, the trace p∣α of p into Mδ
α

is a function on δ defined by

p∣α(γ) ∶=
⎧⎪⎪⎨⎪⎪⎩

p(γ) ↾Mδ
α if γ ∈ δ ∩Mδ

α,

∅ otherwise.

Remark 3.6. p∣α(0) ∈ Coll(ω1,< α) whenever ω1 ∩Mδ
α = α.

Remark 3.7. In general, p∣α might not be a condition, but it will for stationarily
many α ∈ κ. The goal is to show that for stationarily many α, for every p ∈ Pδ, the
trace p∣α is a residue for p, in the sense defined below in 1.1.
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4. Preservation of κ

We show by induction on δ < κ+ that Pδ has κ-cc and is strongly proper with
respect to Mδ

α for Fwc-many α ∈ κ. Here Fwc is the weakly compact filter
generated by sets

{α ∈ κ ∶ Vκ ⊧ φ(A) ⇒ Vα ⊧ φ(A ∩ Vα)},
for a Π1

1-formula φ(X) and a set A ⊆ Vκ. The filter Fwc is a normal filter on κ that
extends the club filter. See Proposition 6.11. from Kanamori [2]. An important
fact is that the statement “T is a κ-Aronszajn tree” is Π1

1 for any T ⊆ Vκ, and
furthermore, so is the statament

“ ⊩P Ṫ is a κ-Aronszajn tree”,

whenever P, T ⊆ Vκ.

The goal is to show the following proposition:

Proposition 4.1. Let δ < κ+.
(1) Pδ has κ-cc.
(2) It holds for Fwc-many α < κ that if p, q ∈ Pδ have the same trace to Mδ

α,
then they have a common residue into Mδ

α.

The rest of the section is devoted to the prove Proposition 4.1. The proof is by
induction on δ. From now onwards until the end of the paper, we fix one
δ < κ+ and assume that the proposition holds for all γ < δ. We begin by
proving a series of lemmas.

4.1. Preliminary lemmas.

Remark 4.2. The poset Pδ has size κ. We tacitly assume that each Pδ is coded as a
subset of Vκ. Up to choosing the <θ-least function, we may assume that each model
M δ

α knows about this coding. This will be important when using the Π1
1-reflection

of κ.

We say that a subposet Q ⊆ Pγ determines a subset S ⊆ Tγ if for all nodes
s, t ∈ S the set of conditions deciding the tree-order of Ṫγ between s and t is dense
in Q.

Lemma 4.3. Assume that Pγ has κ-cc for all γ < δ. Then, it holds for club many
α ∈ κ that for every γ ∈ δ ∩M δ

α, the poset Pγ ∩ Vα determines the set Lev<α(Ṫγ).

Proof. Follows from strong inaccessibility of κ and κ-cc of each Pγ . □

Lemma 4.4. For Fwc many α ∈ κ, it holds that for every p ∈ Pδ, the trace p∣α is a
condition in Pδ ∩M δ

α.

Proof. Follows from the induction hypothesis and the lemma above. □

Lemma 4.5. If p, q ∈ Pδ have a common residue r into Mδ
α, then there are p̂ ⩽ p

and q̂ ⩽ q with a common trace into Mδ
α extending r.
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Lemma 4.6. The set
{α ∈ κ ∶ (1) Vκ ∩Mδ

α = Vα,

(2) α is an inaccessible cardinal,

(3) ∀γ ∈ δ ∩Mδ
α Pγ ∩Mγ

α has α-cc,

(4) ∀γ ∈ δ ∩Mδ
α Pγ ∩Mγ

α ⊆c Pγ ,

(5) ∀γ ∈ δ ∩Mδ
α ⊩Pγ∩Mγ

α
“α = ℵ2”,

(6) ∀γ ∈ δ ∩Mδ
α ⊩Pγ∩Mγ

α
“Ṫγ ∩ Vα is an Aronszajn tree on α”,

(7) ∀γ ∈ δ ∩Mδ
α ∀p ∈ Pγ p∣α ∈ Pγ ∩Mγ

α}
is in Fwc.
Proof. Points (1), (2) follow directly from the fact that κ is weakly compact, in
particular regular and Mahlo. Point (3) follows by Π1

1-reflection from the hypothesis
that Pγ has κ-cc. Point (4) follows from (3) and normality of Fwc by a pressing down
argument. Points (5), (6) follow by Π1

1-reflection. Point (7) is previous lemma. □

4.2. Splitting.

Definition 4.7. Let p, q ∈ Pδ, γ < δ and let s, t ∈ Tγ . We say that the conditions p

and q split the pair (s, t) below α if there are two distinct nodes ŝ, t̂ ∈ Tγ ∩ α
of the same height such that

p ↾ γ ⊩ ŝ < s,

q ↾ γ ⊩ t̂ < t.

The case s = t is not excluded; we say that p and q split the node s below α
if p and q split the pair (s, s) below α.

The use of the weakly compact cardinal is substantial in the following lemma.
Lemma 4.8 (Splitting). The following holds for Fwc-many α < κ: for any two
conditions p, q ∈ Pδ with same trace to Mδ

α there are two conditions p̂ ⩽ p and
q̂ ⩽ q that have the same trace to Mγ

α and that split below α every pair of nodes
(s, t) ∈ (dom(f p̂

γ ) × dom(f q̂
γ)) − α where γ ∈ δ ∩M δ

α.
Proof. We begin with a claim that we will then iterate to finish the proof of the
lemma.
Claim 4.9. The following holds for Fwc-many α < κ: for any γ ∈ δ ∩M δ

α, any
two conditions p, q ∈ Pγ that have a common residue r into Mγ

α , and any nodes
s, t ∈ Tγ − α there are two conditions p̂ ⩽ p and q̂ ⩽ q that have a common residue
r̂ ⩽ r into Mγ

α and that split the pair (s, t) below α.
Proof of Claim 4.9. We show that the claim holds for every α < κ from the set in
Lemma 4.6. Let γ ∈ δ ∩Mδ

α and suppose that p, q ∈ Pγ are conditions with same
trace to Mγ

α . Let s, t ∈ Tγ − α. The reflection properties of the weakly compact
are essential in the following step. Let G ⊆ Pγ ∩Mγ

α be a generic filter containing
the common residue of p and q. It follows that p and q are in the quotient forcing
Pγ/G. By the choice of α, it holds (among other things) that
(∗) ⊩Pγ∩Mγ

α
“Ṫγ ∩ α is an α-Aronszajn tree”.
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Thus (Ṫγ)G is an α-Aronszajn tree, and thus the branch below the node s must be
introduced by the quotient forcing Pγ/G, for otherwise it would be a cofinal branch
in (Ṫγ ∩ α)G. Thus, there must be two conditions pL, pR ⩽ p in Pγ/G that split s
at some level β < α with some distinct nodes sL and sR. Since pL and pR are in
the quotient forcing Pγ/G, there is some r0 ∈ G that forces p, q ∈ Pγ/Ǧ. This r0 is a
common residue for p and q. Then we find an extension q̂ ⩽ q, also in the quotient
Pδ/G, such that q̂ decides the node below t at level β, call it t̄. There is r ∈ G that
extends r0 and forces q̂ ∈ Pδ/Ǧ. Then r is a common residue for pL, pR and q̂. If
t̄ ≠ sL, then pL and q̂ are as wanted, and if t̄ ≠ sR, then pR and q̂ are as wanted.
This ends the proof of the claim. □

We now complete the proof of Lemma 4.8 by iterating Claim 4.9 countably many
times. Using a suitable enumeration, we find conditions (pn)n<ω and (qn)n<ω such
that conditions pn and qn have a common residue rn into Mδ

α and split a pair of
nodes (sn, tn) from Tγn − α, where γn ∈ δ ∩Mδ

α, sn ∈ dom(fpn
γn
) and tn ∈ dom(fqn

γn
).

This is accomplished by first fixing a bijection ⟨⋅⟩ ∶ ω ×ω ×ω → ω that is suitable
in the sense that whenever n = ⟨m, k, l⟩, then m ⩽ n. We begin by letting p0 ∶= p and
q0 ∶= q. At step n+1, we assume that pn and qn have been defined and have the same
trace to Mδ

α. We first enumerate the union of the supports (sp(pn) ∪ sp(qn)) ∩Mδ
α

as (γn
k ∶ k < ω), and the set of all nodes in (dom(fpn

γn
k
) − α) × (dom(fqn

γn
k
) − α), for

each k < ω, as ((s(n,k,l), t(n,k,l) ∶ l < ω). Then we pick the unique m, k, l such that
n = ⟨m, k, l⟩ and look at the conditions pn ↾ γk

m and qn ↾ γk
m. We apply the induction

hypothesis of Proposition 4.1(2): since pn ↾ γk
m and qn ↾ γk

m have the same trace to
M

γk
m

α , there is r ∈ Pk
γm ∩M

γk
m

α that is a common residue for them. Then we apply
Claim 4.9 to the nodes s(m,k,l) and t(m,k,l): we find two conditions p′ ⩽ pn ↾ γk

m

and q′ ⩽ qn ↾ γk
m in Pγk

m
that split s(m,k,l) and t(m,k,l) and have a common residue

r′ ⩽ r into M
γk

m
α . By Lemma 4.5 we may extend further to assume that p′ and q′

have the same trace into M
γk

m
α , and the same trace extends r′. We define pn+1 and

qn+1 by taking the pointwise union:

pn+1 ∶= p′⌢pn ↾ [γk
m, δ),

qn+1 ∶= q′⌢qn ↾ [γk
m, δ).

Then pn+1 and qn+1 have the same trace to Mδ
α and split the nodes s(m,k,l) and

t(m,k,l).
Finally, we let p̂ ∶= ⋃n pn and q̂ ∶= ⋃n qn. They are as wanted.

□

4.3. Proof of κ-cc and existence of common residues.

We finally are ready to prove Proposition 4.1.

Proof of Proposition 4.1. The proof is by induction on δ. We assume that the
proposition holds for γ ∈ δ and show that it holds for δ.

(1) We show that Pδ has κ-cc. Let {pα ∶ α ∈ κ} ⊆ Pδ. We find distinct α and β
such that pα and pβ are compatible.
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The general idea is as follows. By applying Splitting Lemma 4.8, for
Fwc many α, find conditions pL

α, pR
α ⩽ pα which split relevant pairs of nodes

and satisfy pL
α ∣α = qR

α ∣α. Then, by pressing down with Fodor’s lemma, it is
possible to show that for Fwc many α < β, the left extension pL

α is compatible
with the right extension pR

β . This allows to finish.

Now in more detail. Look at the set Sδ ∈ Fwc from Lemma 4.8. For every
α ∈ Sδ, find

pL
α, pR

α ⩽ pα

such that pL
α ∣α = pR

α ∣α and for all γ ∈ δ ∩M δ
α, the pair (pL

α, pR
α ) splits each

pair of nodes (s, t) in (dom(fpL
α

γ )×dom(fpR
α

γ ))−Vα with some pair of nodes
(s̄, t̄) from Vα. By pigeonhole principle there is an Fwc-positive set U ⊆ Sδ

such that for all α, β ∈ U there are isomorphisms

pL
α ≅ pL

β ,

pR
α ≅ pR

β ,

which fix the traces

pL
α ∣α = pL

β ∣β = pR
β ∣β = pR

α ∣α.

Up to further refining U , we may assume that for all α < β from U and
γ ∈ δ,

sup{ht(t) ∶ t ∈ (dom(fpL
α

γ ) ∪ dom(fpR
α

γ )) − Vα}

<min{ht(t) ∶ t ∈ (dom(fpL
β

γ ) ∪ dom(fpR
β )) − Vβ},

and that
(sp(pL

α) − α) ∩ (sp(pR
β ) − β) = ∅.

Choose α < β from U . We claim that pL
α ∣∣pR

β . Define p̂ to be the pointwise
union, by letting

p̂(0) ∶= pL
α(0) ∪ pR

β (0),

p̂(γ) ∶= f
pL

α
γ ∪ f

pR
β

γ .

We claim that p̂ extends to a condition. We need to make sure that p̂ ↾ γ
decides the tree-order of Ṫγ relativised to dom(f p̂

γ ) and that show that f p̂
γ

is forced to be a specializing function. If to the contrary this is not the
case, then there are two distinct nodes s, t ∈ dom(f p̂

γ ) such that

f p̂
γ (s) = f p̂

γ (t)

and such that p̂ ↾ γ ⊩ s ⩽ t. If s, t ∈ dom(fpL
α

γ ) or s, t ∈ dom(fpR
β

γ ), we
are done. Assume thus that s ∈ dom(fpL

α
γ ) and t ∈ dom(fpR

β
γ ). Now, by

construction,

pL
α ↾ γ ⊩ s̄ < s,

pR
β ↾ γ ⊩ t̄ < t.
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This is because the pair (pL
α ↾ γ, pR

α ↾ γ) splits some pair (s, t′) with (s̄, t̄′)
and the pair (pL

β ↾ γ, pR
β ↾ γ) splits a pair (s′, t) with (s̄′, t̄). This implies

p̂ ⊩ s�t.
(2) We show that for Fwc many α ∈ κ, whenever p and q are two conditions in

Pδ with the same trace p∣α = q∣α to Mδ
α, then they have a common residue

to M δ
α.

● Suppose to the contrary that there is an Fwc-positive set S such that
for every α ∈ S, there are two conditions pα and qα with the same
trace pα∣α = qα∣α and such that no condition in Pδ ∩Mδ

α is a common
residue for them. We may choose the set S such that every α ∈ S
satisfies all properties listed in Lemmas 4.3, 4.4 and 4.6. Furthermore,
we may assume by the splitting lemma 4.8 that for every α ∈ S, there
are p̂α ⩽ pα and q̂α ⩽ qα with same traces p̂α∣α = q̂α∣α and such that all
relevant pairs of nodes are split.
● By stratifying by levels we may arrange that for α < β in S′, the

conditions p̂α and q̂β are compatible, as in the proof of κ-cc.
● For every α ∈ S there is a maximal antichain

Wα ⊆ {r ∈ Pδ ∩Mδ
α ∶ r ⩽ p̂α∣α = q̂α∣α and (r�p̂α or r�q̂α)}.

● Since we already proved κ-cc of Pδ, we may assume that Pδ ∩M δ
α ⊆c

Pδ/p̂α for every α ∈ S. This implies that Wα is a maximal antichain in
Pδ/p̂α∣α.
● Each antichain Wα has size < κ. There is a subset S′ ⊆ S such that

Wα = Wβ for α, β ∈ S′, and such that for r ∈ W , p̂α�r iff p̂β�r and
q̂α�r iff q̂β�r. This follows by Fodor’s lemma applied to the fact that
wlog we may fix an enumeration of all antichains Pδ of length κ and
since there are stationarily many inaccesibles below κ, there are many
α < κ such that the enumeration gvies an enumeration of antichains of
Pδ ∩Mδ

α of length α; then the function mapping α to the index of Wα

is regressive.
● Choose some v ⩽ p̂α, q̂β . Then v ⩽ p̂α∣α and without loss of generality

v does not belong to Pδ ∩M δ
α. Thus v ∉Wα =W either.

● We claim that W ∪ {v} is an antichain. This will contradict the max-
imality of W . Indeed, if w ∈W , then either w�p̂α or w�q̂β . The first
case implies that w�v and the second case implies that w�v. Thus
W ∪ {v} is indeed an antichain. This is a contradiction.

□

Corollary 4.10. Each poset Pδ is κ-strongly proper and have κ-cc, for δ < κ+. The
poset Pκ+ has κ-cc.
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